污水处理工艺中鼓风机调控方式的选择
来源:中国论文下载中心 [ 06-03-11 14:11:00 ] 作者:侯润珍 编辑:studa9ngns
在城市污水处理工艺中,法具有投资少、处理效率高、运行经验成熟等特点而被广泛使用。其系统通常采用鼓风。实际运行中,污水的水质、水量及环境等因素总处在变化之中,系统应能根据池溶解氧含量的变化及时调节供气量,以保证处理效果,并不致浪费能源。因此,在项目设计阶段,业主和设计单位均高度重视鼓风机的选型及调控方式的选择。
太原市河西北中部污水处理厂工程的初步设计,鼓风设备采用了单级高速离心风机,变频控制调节风量的方案。为了满足污水处理工艺的要求,*大限度节能、降低建设投资,经考察,并多次组织专家进行技术经济分析和论证,认为针对本工程污水处理鼓风工艺特点,采用进口导叶是鼓风机合理的调控方式。 1 工程概况及鼓风机调控方案
1.1 工程概况
太原市河西北中部污水处理厂位于太原市汾河西岸,九院沙河入汾河口南岸,是国家投资的“双千亿”工程之一。设计规模为处理污水量150000m3/d,采用A-B法生物处理工艺。工程分二期建设,一期工程按80000m3/d实施,二期达到设计处理能力,目前正在实施中。
1.2 鼓风机调控方案
在初步设计中,鼓风装置,设计选用单级高速离心鼓风机。考虑到污水处理量的不均衡性,为了节约能源,保证风机出口压力不变及各工艺构筑物需气量的要求,设计采用变频调节的方式来控制鼓风机风量的变化。
主要设计参数如下:
出口相对风压:49 kPa
风量:150 m3/min·台(一期4台)
进气温度:25℃
进气压力:98 kPa
排气压力:147 kPa
变频器接受调节信号为4~20 MaDC
鼓风示意见图1。
2 离心风机调控方式的分析、选择
离心风机是目前应用*广泛的风机,是风机节能的主要对象。从调查中了解到,目前风机运行中存在的主要问题是能源浪费严重。根据国家有关部门统计,风机与泵的用电量占国内用电总量的40%左右[1]。造成风机能耗大的主要原因是由于运行中的风机大量采用档板、阀门等调节方式。这种方式虽简便易行,但在调节过程中将产生大量的能量损耗。因此,在污水处理工程中需经常调节风量的鼓风机,应选择合适的调节方式,以降低能耗。
2.1 ��心风机的工作原理及特性
单级高速离心风机的工作原理是:原动机通过轴驱动叶轮高速旋转,气流由进口轴向进入高速旋转的叶轮后变成径向流动被加速,然后进入扩压腔,改变流动方向而减速,这种减速作用将高速旋转的气流中具有的动能转化为压能(势能),使风机出口保持稳定压力。
从理论上讲,离心鼓风机的压力-流量特性曲线是一条直线,但由于风机内部存在摩擦阻力等损失,实际的压力与流量特性曲线随流量的增大而平缓下降,对应的离心风机的功率-流量曲线随流量的增大而上升。当风机以恒速运行时,风机的工况点将沿压力-流量特性曲线移动。风机运行时的工况点,不仅取决于本身的性能,而且取决于系统的特性,当管网阻力增大时,管路性能曲线将变陡。
风机调节的基本原理就是通过改变风机本身的性能曲线或外部管**性曲线,以得到所需工况。
2.2 变频调控原理与特性
随着科技的不断发展,交流电机调速技术被广泛采用。通过新一代全控型电子元件,用变频器改变交流电机的转速方式来进行风机流量的控制,可以大幅度减少以往机械方式调控流量造成的能量损耗。
变频调节的节能原理:
图2中曲线1和2表示调速时的压力-流量曲线,曲线3和4表示节流调节时管路阻力特性曲线,曲线5表示恒速时功率-流量曲线,设A点为风机*大工况点。当风量需从Q1减少到Q2时,如果采用节流调节法,工况点由A到B,风压增加到H2,由图中可看出轴功率P2下降,但减少的不太多。如果采用变频调节方式,风机工况点由A到C,可见在满足同样风量Q2情况下,风压H3将大幅度下降,功率P3随着显著减少。节省的功率损耗△P=△HQ2与图中面积BH2H3C成正比。
由以上分析可知,变频调节是一种高效的调节方式。鼓风机采用变频调节,不会产生附加压力损失,节能效果显著,调节风量范围0%~100%,适合调节范围宽,且经常处于低负荷下运行的场合。但是,当风机转速下降,风量减小时,风压将发生很大变化,由风机比例定律:
Q1/Q2=(n1/n2), H1/H2=(n1/n2)2, P1/P2=(n1/n2)3
可知,当其转速降低到原额定转速的一半时,对应工况点的流量、压力、轴功率各下降到原来的1/2、1/4、1/8,这就是变频调节方式可以大幅度节电的原因。
根据变频调节这一特性,对于在污水处理工艺中,池始终保持5m正常液位(见图1),要求鼓风机在出口压力恒定的条件下,进行大范围的流量调节,当调节深度较大时,将会使风压下降过大,不能满足工艺要求。当调节深度较小时,则显示不出其节能的优势,反而使装置复杂,一次性投资增高(本工程中鼓风机采用变频调节比导叶调节增加一次性投资20万元)。因此,对本工程的池需保持5m液位的工况条件下,采用变频调节方式显然是不合适的。
2.3 进口导叶调节原理及特性:
进口导叶调节装置即在鼓风机吸风入口附近装设一组可调节转角的导叶-进口导叶,其作用是使气流在进入叶轮之前发生旋转,造成扭曲速度。导叶可绕自身轴转动,叶片每转动一个角度就意味着变换一个导叶安装角,使进入风机叶轮的气流方向相应改变。
进口导叶调节风量原理是:当导叶安装角θ=0°时,导叶对进口气流基本上无作用,气流将以径向流入叶轮叶片。当θ>0°时,进口导叶将使气流进口的**速度沿圆周速度方向偏转θ角,同时对气流进口的速度有一定的节流作用,这种预旋和节流作用将导致风机性能曲线下降,从而使运行工况点变化,实现风机流量调节。进口导叶调节的节能原理通过图3[1]说明。
图3中曲线1为节流调节时功率-流量曲线,曲线2为进口导叶调节时的功率-流量曲线。当进口导叶安装角由θ1=0°增大为θ2或θ3时,运行工况点由M1移至M2或M3;流量由Q1减小至Q2或Q3;轴功率由P′1减少至P′2或P′3。图中用剖面线表示的面积为进口导叶比节流调节节省的功率。
在本工程中,池深度是固定的,鼓风机在保持出口压力恒定条件下,进行流量调节,即H=常量,Q=变量时,管网的特性曲线近似于水平直线,鼓风机采用进口导叶调节,不必借助于改变管**性曲线,可通过改变导叶的开闭角度,使风机的压力-流量性能曲线改变,流量的变化是通过将工况点移动到新的改变了的风机特性曲线上的方法实现的(见图4)。
离心风机采用进口导叶调节方式,在部分负荷运行时可获得高效率和较宽的性能范围,在保持出口压力恒定条件下,工作流量可在50%~100%额定流量范围内变化[2]。调节深度愈大、省功愈多。如流量减少到额定流量的60%时,进口导叶方式比进口节流方式节省功率达17%之多[3]。此外,其结构相对简单,运行可靠,维护管理方便,初期投资低。因此,本工程中鼓风机采用进口导叶调节流量,显然是*佳调节方式。
2.4 不同调控方式的比较
图5给出了不同调控方式时风量和轴功率的关系。尽管变频调节的离心鼓风机调节范围很广,在节能上有显著效果,但用在本工程的工艺系统中将受到工艺条件限制,调节范围仅为80%~100%,而且通过图5[3]可看出,在相对流量变化不大时,变频与导叶两种调节方式消耗功率差别并不大,因此采用变频调节方式,其节能特长显示不出来,这就失去了选择它的意义。而选择导叶调节方式的鼓风机,在保持出口压力恒定条件下可以较大范围调节风量(50%~100%),以保证污水中溶解氧含量稳定,相对地节省了能源。所以应选择导叶调节方式的高速离心风机,作为本工程的设备选型。同时,为了更好地体现出节能效果,对于大功率的离心风机,还应注意配套电机的选择,如采用10kV高压电机,也有助于降低能耗。
3 结语
通过对变频与导叶调节方式的原理与特点的分析,明确了在采用鼓风的污水处理工艺中,鼓风机调控方式的选择,不能只考虑节能,而必须在满足工艺对风量、风压要求前提下,从流量变化范围、风机功率大小、调节装置的技术复杂程度、可靠性及投资等方面综合考虑,进行技术经济分析,作出合理的选择。
参考文献:
[1]吴民强.泵与风机节能技术问答[M]北京:中国电力出版社,1998.
[2]王洪臣城市污水处理厂运行控制与维护管理[M]北京:科学出版社,1997.
[3]聂能光,李竀要狈缁谀苡虢翟隱M].北京:科学出版社,1990.
转贴于 中国论文下载中心http://www.studa.net